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NUMERICAL MODELING OF DYNAMIC CRACK PROPAGATION IN FINITE BODIES,
BY MOVING SINGULAR ELEMENTS - PART II. RESULTS

* *
T. Nishioka and S. N. Atluri"
Center for the Advancement of Computational Mechanics
School of Civil Engineering
Georgia Institute of Technology, Atlanta, Georgia

Absgract

<7Using the moving-singularity finite element method described in Part I
of this paper, several problems of dynamic crack propagation in finite bodies
have been analysed. Discussions of the effects of wave interactions on the
dynamic stress-intensity factors are presented. The obtained numerical results
are compared with the corresponding infinite domain solutions and other

available numerical solutions for finite domainsaﬂ

Introduction /

In Part 1 of the present paper [1], a "moving singular-element" procecure
has been presented for the dyramic analyses of problems of fast crack propacation
in arbitrarily shaped finite bodies with linear elastic material behaviour. In
this procedure a singular-element, within which a large number of analytical
eigen-functions corresponding to a propagating crack are used as basis functions
for displacements, may be translated by an arbitrary amount AZ in each time
increment At of the numerical time-integration procedure. The moving singular-
element, within which the crack-tip has always a fixed location, retains its'
shape at all times, while the mesh of "regular" (isoparametric) finite elements,
surrounding the moving singular element, deforms accordingly. An energy- J
consistent variational statement was developed, as a basis for the above "woving }

singularity" finitc-element method of dynamic crack propagation analysis. It
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has been shown [1] that the present procedure leads to a direct evaluation
of the dynamic stress-intensity factors.

In .the present Part II of the paper several numerical studies of stationary
as well as propagating cracks in finite bodies, are presented. These studies,
in general, fall into the category of linear elastic dynamic fracture mechanics.
These studies, in addition to illustrating the efficiency and accuracy of the
present procedure, also shed light on the effects of stress-wave interactions
on the stress-intensity factors for dynamically propagating cracks in finite
bodies.

The presently considered examples include: (i) static extension of a
central crack in a panel from a non-zero initial length; (ii) self similar,
constant-velocity, propagation from a finite initial length of a central crack
in a finite plane body subject to an uniform, time-independent, tensile
stresses (normal to crack-axis) at the edges (which problem, is analogous to
that treated by Broberg [2], and Rose [3,4]); (iii) a stationary central crack
in a finite plane body subject, at its edges, to a Mode I type uniformly
distributed stress with a Heaviside step-function time-dependence (analogous
to the problems of Baker [5], Sih, Embley and Ravera [6], and Thau and Lu [7]);
(iv) a problem similar to that in (iii) except that the crack-tips remain
stationary until a time to where upon they start propagating at a constant
speed (analogous to the problems studied by Freund [8)); and {(v) constant-
velocity propagation of an edge-crack in a panel, with the direction of
propagation being parellel to the panel-edges on which uniform displacements,
normal to the edges, are prescribed (analogous to the problem treated by
Nilsson [71). A1l the references (2-8] deal with unbounded bodies., except
[9) which deals with a finite height, but infinite width strip. Thus the

presently obtained results for finite bodies are compared with those in [Z-3]




and the effects of finiteness of the domains are discussed. Compariscns of
the present results with the numerical results of other investigators, where
availabié, are also presented and discussed.

In the following we present results for each of the problems cited above.

(i) Static Crack Extension

To test the accuracy of the present method of "moving singular-elements”,
first a static problem of a central-cracked square panel [2L(length) = 2W(width)],
subjected to uniform tension at edges parrellel to the crack axis, was solved
to obtain the static stress-intensity factor as 5 function of the current crack
length, Z. Thus, in the finite element development given in Part 1 of this
paper (1], velocity and acceleration effects were ignored. The eigen-functions
embedded in the singular-element reduce, when v = 0, to the well-known
Williams’ eigen-functions as shown in Appendix A of [1]. Starting from an
initial crack length value of Lo = 0.2W, the singularity element was successively
translated (in Mode I growth sense), statically (with v = 0) in increments of
AZ = 0.005W until a final value of crack length £ = 0.5W is reached. During
the above series of calculations, the externally applied uniform tension was
held constant. At each current crack-length level, the stress-intensity
factor is computed directly as an unknown from the finite element equations, as
described in [1). From the normalized stress-intensity factor solutions shown
in Fig. 1, it is seen that the present results agree excellently with those
reported by Isida []0]. The normalized results shown in Fig. 1 may be viewed
as correction factors for static stress-intensities, due to the finite size of
the nanel.

we note that tie syabols (1) in Fig. 1, as well as in all the subsequint
Fiqures, denote the current crack length (Z/W) where the regular elements

surrounding the moving crack-element were readjusted as described in Fig. ?
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(i1) Self-Similar, Constant Velocity, Crack-Propagation from a Finite In4tial
Length

The problem is that of a centrally cracked square panel (L = W = 40mm)
: 1

with properties: u (shear modulus) = 2.94 x 10 0 N/nn?; v ( Poisson's ratio)

= 0.286; p( Mass density) = 2.45 x 103 Kg/nt. A time-independent tensile
stress was assumed to be acting at the edges of the specimen parrellel to the
crack-axis. The crack is assumed to open from an initial length (ZO/N) = 0.2
and to grow symmetrically with a constant velocity, v. This problem may be
considered to be similar to that treated by Broberg [2] except that Broberg
treated an infinite body with a crack which opens from a zero initial length.
The problem was analyzed for four different values of v, namely, (v/CS) = 0.2,
0.4, 0.6 and 0.8 respectively, where the shear wave speed for the present
problem is CS = 3.4641 x 106 mm/sec. The dilatational and surface (Rayleigh)
wave speeds, C4 and Cp, respectively, are such that: (Cd/CS) = 1.8266, and
(CR/CS) = 0.9238.

In all the four considered cases of (v/CS) ratio, the increment of crack
growth in each step, AZ, was kept the same, at the value: (AZ/W) = 0.005.
Thus, in each of the considered (v/CS) cases, the time integration step, At,
changes according as: [}v.At)/Z] = 0.005. The finite element mesh used, at
the initial crack length in each of the four cases, is shown in the inset of
Fig. 3. In this Figure, as well as in Figs. (1,6 and 9), the singular-element
near the crack-tip is identified by hatched markings.

As noted in the review article by Rose [3], the dynamic stress intensity
factor K may be expressed as the product of a velocity factor k(v) and a

static factor K*; thus,
&
K = k(v) K ()

The "static factor" K* depends on the current length of the crack, the applied
load, the history of crack extension, but not on the instantaneous crack spead.
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As also discussed in [3], K* is, in general, not equdT to the static stress-
intensity factor, KS, for a stationary crack of the same length as the

moving crack. The analytical expression for K" (in an infinite body subizcia’
to uniform stress normal to the crack axis), as a function of the current

crack length is given by Eshelby [11] and in [3], as:

== (2m)s [ o, (/T - 0% dx (2)
it j;: Uyy X - X </
0
where, g (x) = o lxl/(x2 - ):2)1/2 s Ix] > (3)
yy 0 ? 0

In Eqgs. (2 and 3), o is the applied tensile stress at infinity, 220 is thz
initial crack length, and x,y are cartesian coordinates centered such that x
= + I(t) denote the current crack-tips and y is normal to crack-axis. Thus
Oy (x) in Eq. (2) is the initial distribution of stress along the axis of
the crack, prior to its' propagation. Eshelby's results for the integral in

Eq. (2) is:
K" = [olnz,)% (2/m) ((2¥€) E-F}/(1+(£/2))* (4)

where £ = (T - Eo)/zo; and E and F are the complete elliptic integrals of the
2nd and 1st kind, respectively, with the modulus [g/(2+g)]5. On the other
hand, the static-stress intensity factor K: for a crack of length 2 in an

infinite domain is,
K = a(nz)'t (v)

Thus, in general, K*m < K:. It is also noted that the Eq. (4) for s
valid only until the time that disturbances from one crack-tip reach the other
(moving) crack-tip. However, for the case of a crack growing self-similarly
from a zero initial length (xo = 0) with a constant velocity v, as in the

problem studied by Brobera (21, disturbances from one crack tip influence at

all times the other moving crack tip if 2v < ¢q, and K*™ = K, at all times.
5
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The normalized dynamic stress-intensity factor solution for the present

problem of a crack, in a finite square panel, propagating self-similarly at

a constant velocity (v/cs) = 0.2.1s shown in Fig. 2. Note that the normaliza-
tion is such that a value of unity represents the normalized stress intensity
factor K: for a crack of length 2I(% = Zo + vt) in an infinite solid with time-

independent remote tension o. Also shown in Fig. (2) are: (i) the finite-size

f

1
_correction factor F = K:/o(nz)é for the static stress-intensity factor K¢

in

the present finite domain; (ii) the normalized "static" factor K*m/cr(wrx)l/2 R

as calculated from Eq. (4), and (iii) the velocity factor k{(v) for (v/CS) = 9.2,
as given by Broberg [2]. The effect of the finiteness of the domain on K

may be accounted for, approximately, by including a finite-size correction factor
in the initial stress-distribution at Zo, in Eq. (3) above. Thus it appears

that one may write, approximately, that K*f = F(ZO)K*w. For the present

case of (zo/w) = 0.2, the finite correction factor F(Eo) >~ 1.055, as seen from
Fig. 1.

Also marked in Fig. 2 are several specific instants of time (or equivalently),
the corresponding values of £) with the notations: (a) Dcs S¢ and R, are,
respectively, the times taken by the dilatational, shear and Rayleigh waves
to travese one crack-width, (b) 0D, (or RcRc) denotes D (or Rc) plus the
time for the first rescattered dilatational (or Rayleigh) waves to travel one
crack-width; (c) DD (or Sch) denotes the time taken for the dilatational
(or shear) waves emanated by one crack-tip to be reflected by the nearest
free-boundary and reinteract with the crack-tip in questior. The above times
are calculated from the continuum relations for the respective wave speeds. /

However, it should be borne in mind that a "consistent-mass" representation

is used in the present finite element method.




For the case of (v/Cs) = 0.2, it is seen from Fig. 2 that the computed

normalized dynamic stress-intensity factor correlates excellently with the
values given by F(ZO)Kmk(v)/c:(m:)!i until roughly the time denoted by Rc.
At longer times, je., at the times greater than Rc and Dch’ the computed
normalized dynamic KI(t) appears to correlate excellently with the values
given by@ K:k(v) / c(nz)%]where B is a constant. It is interesting to
observe that, for the present problem, this constant 8 appears to be equal
to G(ZRC)/F(ZRC) where F(ZRC) is the finite correction factor in the static
stress-intensity for a crack of length equal to the current length, Zpee in
a dynamic probiem, at which the event Rc (as defined earlier), occurs; where-
as, G(ZRC) is Tikewise, the ratio [F(ZO)K*m/o/hz] at ¢ = ch' The event RC
is seen to occur at the time, E = (220)/(CR-V), and thus, Ip. =-I,* vt.
Both ; and (ERC/W) decrease as Zo decreases, for given CR and v. Thus, for
smaller values of o (and/or smaller values of v), the ratios F(ZRC), G(ZRC),
and hence B tend to a value of unity. Thus, for cracks propagating from
initial lengths such that (ZO/W) << 1, it appears that at the times greater
than RC and Dch and/or after the crack has grown dynamically to a few times
its' initial length, the static factor K*Tc approaches the static-stress-
intensity factor for the current crack length in the finite body, namely, K:-
In connection with the. presently computed results shown in Fig. 2, it
should be noted that the crack velocity, v, was takes to be zero at the initial
crack length o It is assumed that the crack-tip accelerates to a velocit:,
(v/CS) = 0.2, during the first time increment, At. The convergence of the
present numerical results to the analytically predicted ones, at small tircs,
t << U in the present case of (v/CS) = 0.2, could have been studied by al- rine
this time step At in which the crack-tip accelerates from (v/Cs) = 0 to (v/f)\
= 0.2. However, this was not attempted.

- y



The computed normalized dynamic stresé—inténsity factor solution for the

case (v/CS) = 0.4 is shown in Fig. 3, wherein the times DC, Sc’ Dch and Rc’
as defired earlier, are also marked. Once again, it is seen that until sienifi-
cant interaction of the waves from the other crack-tip and the free surface
takes place (ie., for time t < RC or Dch), the computed dynamic K-factor for
the finite body correlates excellently with the value predicted by the approxinate
. function: [K*fk(v)]. v

Finally, the results for the cases (v/Cs) =.bgé and 0.8, respectiQe]y,
are shown in Fig. 4, wherein only the times Dc’ and DCDf are also marked.
The values of RC and Sc are greater than the time for which the solution is
obtained. Once again, it is seen that the computec dynamic K-factor correlates
well with the approximate prediction, K*fk(i) . ‘iowever. the convergence o7
the computed solution, to that analytically predicted, is slow, at these
nigher crack-speeds. A possible reason for this may be the initial conditions
at Zy used in the present study, as explained eariler.

The crack-mouth opening displacements at various instants of time (or
equivalently, at corresponding crack-lengths), for the case of (v/CS) = 0.4,
are shown in Fig. 5. Also shown in Fig. 5 are the corresponding analytical
results by Broberg [2], who consideres constant velocity crack-propagation
starting from a zero initial crack-length. An excellent correlation between
the present results and those of [?] is noted. A similar correlation was
also noted for the other considered cases of (v/Cs) ratio, but are not shown ﬂ

here.

(iii) Stress-Wave Loading of a Stationary Crack in a Finite Body

The problem is that of a rectangular panel [(w/L) = 2.6] with a centrally
located crack of length (:o/w) = (3/13). The aaterial properties are taken ‘
to be: p(shear modulus) = 2.94 x 1010 N/mm2; v = 0.286; and 5 = 2.45 x 106°

8




o 0l

kg/m3. Uniformly distributed uniaxial tensile stresses, with a Heaviside stes-
function time-dependence, were assumed to act at the edges of the panel parrallel
to the crack-axis. The crack is assumed to be stationary under the action of
this time-dependent loading.

Due to symmetry, only a quadrant of the panel is modeled by finite elements,
as shown in Fig. 6. Also marked in Fig. 6 are specific instants of time,

calculated by using continuum wave speeds, with the notations: (a) Dm is

the time taken by the dilatational waves to travel the distance from the
boundary, where time-dependent tractions are applied, to the crack-tip; (b)
Dch’ DmSC and Dch are, respectively, equal to Dm plus the time taken by
the first scattered dilatational, shear, and Raleigh waves to reach from one

AsiodedGiana et i e . T

crack-tip to the other; (c) DpPcDe s equal to 8,0 plus the time taken by
the first rescattered dilatational wave to travel one crack-width; (d) DchDf
is ‘equal to Dh plus the tire taken by the scatizra’ Tongtitudinzl waves ts

travel from the crack-tip to the nearest free bouncary surface and back to

} the same crack-tip; (e) DmDm is the time taken by the dilatational waves to
travel the length of the bar, reflect from the boundary surface on the §}

DDS and DD R i

Dc’ mm¢C mn ¢

opposite and return back to the crack-tip; and (f) DmDm
] are, respectively, equal to DmDm plus the tine for the rescattered dilatational, j
| shear and svrface waves to travel one crack-.idth.

The presently computed normalized dynamic stress-intensity factor solution
is shown in Fig. 6. Also shown in Fig. 6 are the analytical solutions by
Baker [5]. Sih, Embley and Ravera [6], for infinite Jdomains, and the numerical
solution by Aoki et al DZﬂ for a finite domain identical to the one consicor: 1§
1 here. During the time interval Dm to Dch’ vhen no wave intereaction takes

place, the results for the oresent problem must acrec with the resulis of

Baker [S] and this can be seen to be the case with the present results. The

solution at longer times is found to be in good aareement with that of Sih et al

9




[6]- It is noted that the overshoot in the k-factor at the time instant Dch
in the present solution, as compared to the solution by Sih et al [6], is
analogoys to that in a recent solution by Kim (]3]. It is also seen from fig.
6, that the present solution is higher than that of Aéki et al [12] at all
times. However, the solution by Aoki et al appears to be lower than that by

Baker [5] even for times less than DD..

Finally, it is of interest to note that even though the time for the
longitudinal wave to arrive from the loaded boundary to the crack, as computec
from continuum wave speeds, is Dm as marked in Fig. 6, a nonzero stress-
intensity is observed at the crack-tip even at times lower than Dm in the
finite element solution. This is due to the inertia-coupling that exists
between the finite element nodes (especially those of the singular-element)

when a consistent mass-matrix, as in the present, is used.

(iv) Crack-Propagation at Constant Speed: Stress-Yave Loading

We consider the problem wherein the geometry, material properties and
the time-dependent loading are all identical to those described under the case
(iii) above. In this problem, the crack with an initial Tength of (Zo/w)
= 3/13 remains stationary until a time to = 4.4 us and then propagates with
a constant velocity v = 1000 m/sec. The finite element breakdown at the
initial crack length, Zo, is identical to that in Fig. 6. In modeling the
crack propagation, the reqular elements are periodically readjusted as
indicated in Fig. 2 of [1]. The instants of time (or equivalently the value
of =) at which this readjustments arc done, are marked, by (*) in Fig. 7.

Also marked in Fig. 7 are several specific instants of time, calculated
by using continuum wave speeds, with the notations: (a) Dm is the time for
the dilatational waves to travel from the boundary, where a Heaviside step

DS

function tension is applied, to the stationary crack-tip. {(b) Dch’ noc

10




" and Dch are, respectively, equal to Dm plus the time taken by the dilatational,
shear and surface waves first scattered by the stationary crack-tip to reach
the other crack-tip; (c) Dc’ Se» RC are, respectively, equal to t, (when the
crack-tips begin to propagate) plus the time taken by the dilatational, shear
and surface waves emanated by crack-tip at to to reach the other crack-tip;
(d) Dl is the time taken by the longitudinal waves to travel the length
of the panel to the opposite side and return to a (moving) crack-tip; (e)
DcDm is the time taken for the dilatational waves emanating from a crack-tip
at t0 travel to the nearest boundary (which in tnis case is the one where
tractions are applied) and back to the same crack-tip, (f) DchDf is equal
to Dm plus the time taken by the dilatational waves first scattered by the
stationary crack-tip to travel to the nearest free-boundary and back to the
same crack-tip, which is now propagating; (g) Dch is equal to to plus the
time taken by the dilatational waves emanating from the crack-tip at to to
travel to the nearest free boundary and back to the same crack-tip.

The presently computed results for the dependence of the dynamic stress
intensity factor on time are indicated in Fig. 7, along with the comparison

(analytical) results by Freund [8] and Baker [5], and the (numerical) results

by Aoki, et al ﬁé]. As noted earlier, the correlation of the present stationary

crack results with those of Baker [5], until wave interaction takes place, is
excellent. In the case when the crack propagates suddenly at the time t

(= 4.4 us in Fig. 7), the infinite domain results by Freund [8] are seen to
correlate excellently with the present results, until significant interacticn
of waves emanating from one crack-tip with the other crack-tip takes place.
[t 1s noted that in [8] the crack-tip velocity is assumed to change from Zero
to "v" in zero time, whercas., in the present numerical study, this transition

is assumed to take place over a finite time-step 4t. For a closer comparison

1
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with the results of [8], it would be interesting to vary the size of At over
which the above transition occurs; but this is not pursued in the present

study. .It is seen that the comparison results by Aoki et al ﬁé] are somewhat

lower than those in [8] even until the time that the solution in [8] may be

considered valid. Further, the results in [1Z are higher than the present,

after this time.
The crack-face opening displacements at various time intervals for the
propagating crack, as well as similar results at corresponding times for a

stationary crack are shown in Fig. 8. It is interesting to note that st

e A O -

sufficient distances away from the propagating crack-tip, the crack-mouth
opening displacements are nearly the same for the stationary as well as. i
propagating cracks.

(v) Constant Velocity Crack-Propagation in a Strip with Prescribed Boundary-
Displacements

The problem considered is that of the constant velocity propagation of an
edge crack in a square sheet whose edges parreliel to the direction of crack-
propagation are subject to uniform displacements 62 in the direction normail

to that of crack-propagation. This problem is analogous to that treated by

Nilsson [9] who obtained an analytical solution for the steady-state stress- !
intensity factor for the constant velocity propagation of a semi-infinite
crack in a finite-height (normal to crack-axis), infinite-width, strip.
In the present problem the following geometry and material parameters -
are used: (2h/M) = 1.0 (see inset of Fig. 9), v = 0.286; u = 2.94 x 10'0 i/ia?,
and p = 2.45 x ]03 Kg/m3. The crack js assumad to start to propaqate from
an initial length of (Zo/h) = 0.4,
Three different cases of constant velocity propagation, (v/Cs) = 0.2,

0.40, and 0.60, respectively, are considered.

12
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The results for the dynamic stress-intensity factor for the case (v/cs)
= 0.2 are shown in Fig. 9 along with the analytical solutions by Nilsson [9]:
The results in Fig. 9 are normalized with respect to the plane-strain, static
(v = 0) siress intensity factor for the semi-infinite crack in a finite-heiaht,
infinite-width strip, namely, K: = GZE / h%(]-vz) . Also shown in Fig. 9

are certain specific instants of time, with the notations: (a) DCDf],
scsf], are, respectively, the times taken by the dilational, and shear waves,

emanated by the moving crack-tip to be reflected from the nearest free-boundary
and travel back to the crack-tip; (b) DCsz is the time taken by the dilatational
waves emanated from the crack-tip to be reflected by the second free-boundary
(x = W) and travel back to the crack-tip.

It is seen from Fig. 9 that, the correlation be*ween the present and
Nilsson's [9] results is excellent. It may be of interest to note that in
an analysis using the "node-release" technique, Malluck and King ﬁ4] found,
for the case of (v/Cs) = 0.325, that their computed results for the energy-
release rate for a similar problem were about 20% lower than that predictad
by Nilsson [9], as steady-state conditions are reached. This may indicate
the relative efficiency of the present numerical method as compared to the
familiar "node-release" techniques.

Finally the computed results for the cases (v/Cs) = 0.4 and 0.6 are shown
in Figs. 10 and 11 respectively. The times noted in Figs. 10 and 11 have the
same meanings on those indicated in Fig. 9. From Figs. 10 and 11 it is once

again seen that the present results agree excellently with those in [9}.

Closure
The procedure of a "moving singular element”, within which a large
number of eigenfunctions for a propagating crack are embedded, has been

applied to study several probliems of dynamic crack propagation in finite

13
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bodies. The numerical results have been found to correlate well with the

available analytical solutions, for corresponding problems in infinite do-
mains, during the time for which these analytical solutions may be considered
as valid. The computed solutions beyond these times, and the knowledge of the
times involved for wave-interaction in finite bodies, indicate both
qualitatively and quantitatively the effects of stress-wave interactions on
dynamic stress-intensity factors for cracks propagating in finite bodies.

The use of the presented numerical procedure in the simulation of experi-
mental data from dynamic fracture test specimens, as well as in predicting
crack-propagation history in dynamically loaded cracked bodies, are the sub-

jects of a forthcoming paper.
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Figure Captions

Calculation of Static K; factors in a center-cracked tension specimen

by the present "moving-singularity" method: AI = 0.005. (+t)
indicates the current crack length when the regular element are
readjusted as shown in Fig. 2 of [1].

Normalized Dynamic Stress intensity factor for a crack starting from
a finite initial lTength and propagating with constant velocity,
v/C_ = 0.2.

s

Normalized Dynamic Stress intnesity factor, (v/CS) = 0.4.

Normalized Dynamic Stress intensity factors for the cases (v/Cs) =
0.6 and 0.8.

Crack-face Displacements at various time-instants, for a crack
propagating at constant velocity, (v/CS) = 0.4.

Time-Dependence of dynamic stress-intensity factor for a center-crackad
rectangular plate subjected to Heaviside step-function normal stress.

Time-Dependence of dynamic stress-intensity factor for a center-cracked
rectangular plate subject to a step-function normal stress. Crack
remains stationary until to and then propagates with a constant velocity.

Crack-face profiles for a stationary as well as propagating crack at
various times.

Dynamic stress-intensity factor for an edge cracked square sheet
subject to constant normal displacement: (v/Cs) = 0.2.

Dynamic stress-intensity factor for an edge cracked square sheet
subject to constant normal displacement: (v/CS) = 0.4,

Dynamic stress-intensity factor for an edge cracked square sheet
subject to constant normal displacement: (v/CS) = 0.6.
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